
 

 

 



ISSN 2229-6107 

www.ijpast.in                                                                                                                                

 Vol 13 ,Issuse 1. Jan  2023 

 

Regarding the Connection Between Casimir Forces and Statistical 

Correlations 

O.Vamsi
1
, Ch.Manohar

2
, 

 

 

Abstract 

Using a microscopic viewpoint, we demonstrate that the Casimir force can be conveniently stated in terms of the 

bulk one-particle density matrix for a perfect quantum gas contained in a slit. Casimir force range may be 

related to the bulk correlation length using the appropriate formula, which is valid for both bosons and fermions. 

The Casimir forces' low-temperature behaviour is derived. 

 

 

 

Introduction 

Many investigations [1–17] have focused on the 

Casimir forces operating on perfectly horizontal 

walls filled with a perfect quantum gas (the slit 

geometry). There was still no solution to the 

outstanding subject of why the range of Casimir 

forces and the bulk correlation length behave so 

similarly at the microscopic level. It is our intent to 

shed light on this interesting and physiologically 

significant topic. Even though the Casimir forces 

are boundary-dependent, we shall demonstrate that 

in the thermodynamic limit they may be described 

easily in terms of the one-particle density matrix 

[1,18]. 

It itself is independent of the boundedness 

constraints. The distance between two locations in 

space, denoted by r12 = |r1 r2|. Density, or number, 

of particles in a gas that is otherwise uniform is 

given by = 1. (0). Diagonal components of the two-

particle reduced density matrix [1,6,18] provide the 

two-particle number density 2(r12) of pairs of 

particles separated by distance r12. 
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The pair correlation function is defined as the ratio 

of the square root of two to one. 

 

Correlation function B 2(r) for a perfect Bose gas 

may be written entirely in terms of B 1(r) [1]. 

 

indicating the critical density for Bose-Einstein 

condensation, c. Take note that the shape of the 

function B 1(r) varies depending on the value of c 

and >c. For a perfect Fermi gas, an even more 

elementary relationship holds. [18] 

 

In the next sections, we will explore the explicit 

formulations for B 1(r) and F 1(r). It is shown in 

Section 2 how to derive an accurate analytic 

connection between the Casimir forces and the one-

particle function 1(r) that describes an infinite 

system. The deduced formula will serve as the 

foundation for further investigation. And perhaps 

most crucially, it allows us to determine a direct 

connection between the Casimir forces and the pair 

correlation function (r). In fact, Ems. (4) and (5) 

suggest a direct relationship between the Casimir 

forces and the correlation function since they can 

be written in terms of the one-particle density 

matrix (when writing these equations we do not 

display their spin dependence). So, from a 

microscopic perspective, the parallelism in the 

behaviour of the range of the forces and the bulk 

correlation length is readily explicable (Sect. 3). 

Our research makes it possible to recapture in a 

nutshell a wide range of narrow outcomes obtained 

elsewhere using other methods. 

 

We think of the gas as consisting of identical 

particles with mass m, and we put them in a cube 

with sides L and length D, with a volume of V = 

L2D3. We settle on a reference frame with axes 

that run perpendicular to the boundaries of the box, 

so that x, y, and z all point in the same direction. 

Specifically, the z axis is aligned in a direction that 

is perpendicular to the four sides of the square. For 

a given temperature T and chemical potential, the 

grand canonical free energy of bosons is given by 

the series B(T, L, D, ). 

 

Thus, = h/ ln1zexp2 k4 k2 ln1+zexp2 k4. (6) (7) (7) 

Where z = exp(/Kbit), kB is the Boltzmann 

constant, and 2mkBT is the de Broglie thermal 

wavelength. Allowed wave vectors k are taken into 

account in the above summing, which extends to 

the whole domain defined by the boundary 

conditions. The spin of the particles is ignored for 

the sake of notational simplicity, as was noted in 

the introduction. On the x and y axes, we 

implement periodic boundary conditions, setting ox 

and key equal to 2n/L (where n is a positive integer 

between 0 and 2). Obtaining the limit using the 

division of Eq. (6) by L2 The formula for the total 

grand canonical free energy density per unit wall 

area is obtained by considering indefinitely long 

square walls. 

 

The formula for the total grand canonical free 

energy density per unit wall area is obtained by 

multiplying Eq. (6) by L2, and then taking the limit 

L of indefinitely extended square walls. 
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TheDirichletboundaryconditionsareappropriateforh

ardwalls.However, for complextens, we 

willconsiderthree types of boundaryconditions in 

the−direction: 

 

Coreshoundstoothcontributeinform=0intheseriesap

pearinginEq. (8). In the conventional definition, the 

Bose function g2(z) is written as follows: g2(z)= 

l=1zl/l2. We remark that the surface tension 

coefficient of an ideal Bose gas, denoted by B Neu, 

Dir(T,), corresponds to the Neumann or Dirichlet 

boundary conditions, respectively [13]. 

Similarly,for fermion wefind. 

 

Similar to the bosonic situation, we determine 

formulas for the anisotropic surface tension 

coefficients: If F Dir(T,)=F 

Neu(T,μ)=−kBTg2(−a/Kbit)/4λ2. Our attention 

now shifts to the derivation of the formula for the 

Casimir force F(T,D,) (or Casimir pressure) in 

terms of the one-particle density matrix. By 

definition 

 

where’s (T, D,μ)thencescreenerdensity 

 

Eq. (8) evaluates the density B(T, D,) under 

periodic boundary conditions and finds it to be 

equal to the difference between the total grand 

canonical free energy density per unit wall area and 

the bulk free energy density b(T,D,) (evaluated in 

the thermodynamic limit). 

 

 

where[x]denotes thelargest integernot exceeding x, 

and(x)isohydrictiff(x). The period and properties of 

the function (x[x]1/2) shown in the integral and 

above are as follows: Fourier series representation. 
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Which prelateshipCasemiroacetophenone-

particlesemimatrix. We anticipate the following 

fundamental formula to hold for the imperfect Bose 

gases[13,15,17,19,20], where the interparticle 

repulsion is taken into account in the mean-field 

method, even if it was obtained for the ideal Bose 

gases. Nevertheless, when variations of the 

interacting Bose gases are considered, such a 

straightforward relationship between the Casimir 

force and the one-particle density matrix is not to 

be expected to hold. For ideal Fermi gas, a similar 

computation yields the same relationship between 

the Casimir force and the one-particle density 

matrix F 1. (pad) 

 

Before concluding this section, we note that the 

relationships between the Casimir forces 

corresponding to various boundary conditions 

follow directly from Equations (10). 

 

The abovequalitieshold bothFormosansdifermions. 

We emphasise that the dependence of the Casimir 

force on boundary conditions becomes more 

complicated in the case of non-planar walls (see 

[5,21-23]). 

Rangosemiproresendcorralattolent. 

An exponential rule governs the long-range 

behaviour of the one-particle density matrix of a 

Bose gas in the absence of condensation (0, or 

c)[1]. 

 

 

Equation (24) allows us to quickly get the intervals 

that correspond to the Dirichlet and Neumann 

boundary conditions B. 

 

According to (26), (27), the force range diverges 

with a critical exponent v=1/2 as one approaches 

the condensate-containing phase (0). An off-

diagonal long-range order arises in the two-phase 

area (=0), and the one-particle density matrix B 1(r) 

approaches for ray nonzero value (=c) after a 

transition. 

 

Casimir force for a Bose gas as a function of 

separation from walls, shown in Fig. 1. Casimir 

force is measured in units of 2 h22m1. The units of 

measure for this distance are. 
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Here, the Riemann zeta function (3) = p=1 p3 is 

used. It is important to remember that at high 

distances D the Casimir force Fear(T, D,0) is 

proportional to (/D)3, which is much less than the 

bulk pressure of the ideal Bose gas p = Kbit (5/2)/3 

in the two-phase regime. With the help of Eq. (24), 

we can also quickly determine [8,9]. 

 

From El, we may infer the behaviour of the 

correlation function (4). In the zero-phase area, the 

correlation function B 2(r) is equal to [B 1(r)]2. 

There is an exponential damping of correlations 

with respect to the correlation length B in the bulk, 

such that 

 

Casimir forces under Dirichlet and Neumann 

boundary conditions have a range equal to the 

correlation length B. 1 An explanation for this 

surprising agreement may be found in our first-

order equation (22). The crucial exponent for the 

divergence of B and the range of Casimir forces is 

1/2 when 0. Similar conclusions were found in 

Ref.[15] for the imperfect Bose gas [19,20], which 

is in a different universality class than the ideal 

Bose gas [17]. In the absence of a phase transition, 

the decay durations of correlations and Casimir 

forces in a Fermi gas diverge for T0. By solving for 

x in Equation (23), we can determine the precise 

relationship between the correlation length and the 

force spectrum. Theone-

particledensitymatrixofaperfectFermigasisgivenbyt

heformula [18] 

 

The following asymptotic formula holds[18] for the 

characteristics of F 1(r) at low temperatures, which 

piques our attention. 

 

With the Ferminavenombark=(6π2ρ) 

1/3.Thelargerbehaviorinvolvesthusexponentiallyda

mpedoscillationswiththecharacteristicdecaylengthλ

2kF. The connection between the decay times 

associated with various boundary conditions may 

be determined using Ems. (23) and (24). 

 

When T > 0, the correlation function F 2(r) = [F 

1(r)], etc. We infer from (2) that the strength of all 

correlations decays through dampened oscillations 

proportional to their length. 

 

For B=B Dir=B Neu, we have a full analogue to the 

Bose gases, and at zero degrees Celsius, Eq. (33) 

has the form [18]: 

 

When we plug this formula into (23) we see that 

the dominating contribution to the Casimir force 

for D looks like this: 

 

TheCasimirforcedisplaysatypicalforfermionsoscilla

torybehaviorwhichissuperimposedonthepower-

lawdecay, seeFig.2. Keep in mind that the sign of 

the Casimir force changes as the distance between 

the walls grows; as the distance grows, the force 

alternates between being attracting and repulsive, 

with an endless number of stability points. As the 

temperature drops, the amplitude of these 

oscillations grows. At zero temperature, a periodic 

function is responsible for the oscillations. 
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Casimir force for the ideal Fermi gas as a function 

of wall separation at three temperatures is shown in 

Fig. 2. A two h2k5 F2m1 measurement of the 

Casimir force is standard. In this case, we have a 

distance measured in k1 F units. Temperature is 

expressed as the metric t = 2 22k2 F m1 T, which is 

a dimensionless quantity. Blue solid line represents 

t = 0, red dashed line represents t = 0.2, and green 

dotted line represents t = 0.5. (Online colour 

illustration) Just substituting 2D for D in formula 

(37) yields the Dirichlet and Neumann boundary 

condition equivalents. The correlation coefficient 

equals at time t = 0 when: 

 

Concluding Comments 

In the scenario of ideal quantum gases contained in 

a slit formed by two infinite parallel walls 

separated by a distance D, we have examined the 

relationship between the decay lengths describing 

the Casimir forces and the bulk correlation lengths. 

Severeal boundary conditions (periodic, Dirichlet, 

and Neumann) were explored for both bosons and 

fermions. Using a microscopic strategy, we have 

developed a fundamental formula connecting the 

Casimir force to the density matrix of a single 

particle. Its structure, Ems. (22) and (23), is the 

same for both bosons and fermions (23). The 

correlation function is directly connected to the 

one-particle density matrix in the case of ideal 

quantum gases. It is commonly known that the 

Casimir force is affected by the boundary 

conditions chosen, but the bulk correlation function 

is unaffected. The boundary conditions do not 

affect the overall structure of the four fundamental 

formulas, but they do affect which arguments are 

used for the functions. Both Ems. (22) and (23) 

represent the impact of boundary conditions on 

Casimir forces (23). 

ThecaseoftheidealBosegasisparticularlyinterestingd

uetotheBose-Einstein condensing, which happens 

when is equal to zero. In the limit where 0, the 

Casimir force decays exponentially with a decay 

length B, resulting to thermodynamic states that 

correspond to the phase with no condensate. We 

verified that for a constant temperature T Tc, B Dir 

= B Neu = Ber/2 = B ()1/2, where B indicates the 

correlation length of an ideal Bose gas. Ideal Fermi 

gas has the same kinds of relationships. A phase 

transition or critical point is not present, yet the 

Casimir force and the bulk correlation function 

exhibit exponentially damped oscillations with 

increasing amplitude in the limit T 0. As the 

distance between the walls is increased, the Casimir 

force alternates between being attracting and 

repulsive, and this results in the aforementioned 

oscillations. The fermionic bulk correlation length 

F may be related to the equivalent decay length F. 

The proportionality to T1 holds at a certain density, 

and it is seven that these relations are the same as 

in the case of bosons, where F Dir = F Neu = Fer/2 

= F T1. 
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